Measurement, Chance and Data

To view all information on the current Victorian Curriculum go to the VCAA site (http://victoriancurriculum.vcaa.vic.edu.au)

This version of the Mathematics Developmental Continuum is being updated. Currently the organization of the Indicators of Progress is aligned to the outdated VELS curriculum.

VELS levels correspond to school year levels as follows:

  • VELS Level 1 - Foundation
  • VELS Level 2 - Years 1 and 2
  • VELS Level 3 - Years 3 and 4
  • VELS Level 4 - Years 5 and 6
  • VELS Level 5 - Years 7 and 8
  • VELS Level 6 - Years 9 and 10
Mathematics Standards and Progression Points Indicator of Progress

 

At Level 1, students compare length, area, capacity and mass of familiar objects using descriptive terms such as longer, taller, larger, holds more and heavier. They make measurements using informal units such as paces for length, handprints for area, glasses for capacity, and bricks for weight.

They recognise the continuity of time and the natural cycles such as day/night and the seasons. They correctly sequence days of the week. They use informal units such as heartbeats and hand claps at regular intervals to measure and describe the passage of time.

They recognise and respond to unpredictability and variability in events, such as getting or not getting a certain number on the roll of a die in a game or the outcome of a coin toss. They collect and display data related to their own activities using simple pictographs.

 

At Level 2, students make, describe and compare measurements of length, area, volume, mass and time using informal units. They recognise the differences between non-uniform measures, such as hand-spans, to measure length, and uniform measures, such as icy-pole sticks. They judge relative capacity of familiar objects and containers by eye and make informal comparisons of weight by hefting. They describe temperature using qualitative terms (for example, cold, warm, hot). Students use formal units such as hour and minute for time, litre for capacity and the standard units of metres, kilograms and seconds.

Students recognise the key elements of the calendar and place in sequence days, weeks and months. They describe common and familiar time patterns and such as the time, duration and day of regular sport training and tell the time at hours and half-hours using an analogue clock, and to hours and minutes using a digital clock.

Students predict the outcome of chance events, such as the rolling of a die, using qualitative terms such as certain, likely, unlikely and impossible. They collect simple categorical and numerical data (count of frequency) and present this data using pictographs and simple bar graphs.

 

 

At Level 3, students estimate and measure length, area, volume, capacity, mass and time using appropriate instruments. They recognise and use different units of measurement including informal (for example, paces), formal (for example, centimetres) and standard metric measures (for example, metre) in appropriate contexts. They read linear scales (for example, tape measures) and circular scales (for example, bathroom scales) in measurement contexts. They read digital time displays and analogue clock times at five-minute intervals. They interpret timetables and calendars in relation to familiar events. They compare the likelihood of everyday events (for example, the chances of rain and snow). They describe the fairness of events in qualitative terms. They plan and conduct chance experiments (for example, using colours on a spinner) and display the results of these experiments. They recognise different types of data: non-numerical (categories), separate numbers (discrete), or points on an unbroken number line (continuous).They use a column or bar graph to display the results of an experiment (for example, the frequencies of possible categories).

 

At Level 4, students use metric units to estimate and measure length, perimeter, area, surface area, mass, volume, capacity time and temperature. They measure angles in degrees. They measure as accurately as needed for the purpose of the activity. They convert between metric units of length, capacity and time (for example, L–mL, sec–min).

Students describe and calculate probabilities using words, and fractions and decimals between 0 and 1. They calculate probabilities for chance outcomes (for example, using spinners) and use the symmetry properties of equally likely outcomes. They simulate chance events (for example, the chance that a family has three girls in a row) and understand that experimental estimates of probabilities converge to the theoretical probability in the long run.

Students recognise and give consideration to different data types in forming questionnaires and sampling. They distinguish between categorical and numerical data and classify numerical data as discrete (from counting) or continuous (from measurement). They present data in appropriate displays (for example, a pie chart for eye colour data and a histogram for grouped data of student heights). They calculate and interpret measures of centrality (mean, median, and mode) and data spread (range).

 

At Level 5, students measure length, perimeter, area, surface area, mass, volume, capacity, angle, time and temperature using suitable units for these measurements in context. They interpret and use measurement formulas for the area and perimeter of circles, triangles and parallelograms and simple composite shapes. They calculate the surface area and volume of prisms and cylinders.

Students estimate the accuracy of measurements and give suitable lower and upper bounds for measurement values. They calculate absolute percentage error of estimated values.

Students use appropriate technology to generate random numbers in the conduct of simple simulations.

Students identify empirical probability as long-run relative frequency. They calculate theoretical probabilities by dividing the number of possible successful outcomes by the total number of possible outcomes. They use tree diagrams to investigate the probability of outcomes in simple multiple event trials.

Students organise, tabulate and display discrete and continuous data (grouped and ungrouped) using technology for larger data sets. They represent uni-variate data in appropriate graphical forms including dot plots, stem and leaf plots, column graphs, bar charts and histograms. They calculate summary statistics for measures of centre (mean, median, mode) and spread (range, and mean absolute difference), and make simple inferences based on this data.

At Level 6, students estimate and measure length, area, surface area, mass, volume, capacity and angle. They select and use appropriate units, converting between units as required. They calculate constant rates such as the density of substances (that is, mass in relation to volume), concentration of fluids, average speed and pollution levels in the atmosphere. Students decide on acceptable or tolerable levels of error in a given situation. They interpret and use mensuration formulas for calculating the perimeter, surface area and volume of familiar two- and three-dimensional shapes and simple composites of these shapes. Students use Pythagoras’ theorem and trigonometric ratios (sine, cosine and tangent) to obtain lengths of sides, angles and the area of right-angled triangles.

They use degrees and radians as units of measurement for angles and convert between units of measurement as appropriate.

Students estimate probabilities based on data (experiments, surveys, samples, simulations) and assign and justify subjective probabilities in familiar situations. They list event spaces (for combinations of up to three events) by lists, grids, tree diagrams, Venn diagrams and karnaugh maps (two-way tables). They calculate probabilities for complementary, mutually exclusive, and compound events (defined using and, or and not). They classify events as dependent or independent.

Students comprehend the difference between a population and a sample. They generate data using surveys, experiments and sampling procedures. They calculate summary statistics for centrality (mode, median and mean), spread (box plot, inter-quartile range, outliers) and association (by-eye estimation of the line of best fit from a scatter plot). They distinguish informally between association and causal relationship in bi-variate data, and make predictions based on an estimated line of best fit for scatter-plot data with strong association between two variables.